99 research outputs found

    Novel molecular alterations in amyotrophic lateral sclerosis and frontotemporal lobar degeneration spectrum

    Get PDF
    [eng] Amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD) are clinically distinct neurodegenerative diseases that are connected by genetic and pathological overlap. ALS patients present with muscle weakness and spasticity associated with degeneration of motor neurons in the motor cortex, brainstem, and spinal cord that ultimately leads to death. In contrast, patients with FTLD display cognitive dysfunction associated with degeneration of neurons in the frontal and temporal lobes of the brain. Despite being clinically distinct, 15% of individuals presenting FTLD also have ALS, whereas 30% of individuals with ALS will develop FTLD. This implies that these two neurodegenerative diseases are part of a shared clinical spectrum. In recent years, several mechanisms have been proposed as contributory factors in the pathogenesis of neuron damage in ALS and FTLD, including excitoxicity, mitochondrial and energy metabolism failure, oxidative stress damage, altered glial cells, inflammation, cytoskeletal abnormalities, alterations in RNA metabolism, and altered TDP-43 metabolism, among others. However, it is poor known about the etiology of these disorders and their possible treatment. The objective of the investigations presented in this doctoral thesis is focused in the identification of new molecular alterations underlying motor and cognitive changes in post-mortem human spinal cord and brain samples of ALS patients and brain samples of FTLD-TDP patients compared with controls, combining microarray, mRNA, protein and enzyme assays studies. The obtained results have identified new molecular alterations in ALS and FTLD of different biological functions and cellular pathways including changes in mitochondrial energy metabolism, neuroinflammation, neuronal structure, neurotransmission, axonal transport mechanisms and oligodendrocyte function; allowing in turn, the screening and identification of new candidate molecules as biomarkers for these disorders.[spa] La esclerosis lateral amiotrófica (ELA) y la degeneración del lóbulo frontotemporal (DLFT) son enfermedades neurodegenerativas clínicamente distintas que están conectadas por una superposición genética y patológica. Los pacientes con ELA presentan debilidad muscular y espasticidad asociada con la degeneración de las neuronas motoras en la corteza motora, el tronco cerebral y la médula espinal que finalmente conduce a la muerte. En contraste, los pacientes con DLFT muestran disfunción cognitiva asociada con la degeneración de las neuronas en los lóbulos frontal y temporal del cerebro. A pesar de ser clínicamente distintos, el 15% de las personas que presentan DLFT también tienen ELA, mientras que el 30% de las personas con ELA desarrollarán DLFT. Esto implica que estas dos enfermedades neurodegenerativas son parte de un espectro clínico compartido. En los últimos años, se han propuesto varios mecanismos como factores contribuyentes en la patogénesis del daño neuronal en la ELA y el DLFT, que incluyen la excitoxicidad, el fallo del metabolismo mitocondrial y energético, el daño por estrés oxidativo, las células gliales alteradas, la inflamación, las anomalías del citoesqueleto y las alteraciones en el metabolismo del ARN y alteración del metabolismo del TDP-43, entre otros. Sin embargo, es poco conocido sobre la etiología de estos trastornos y su posible tratamiento. El objetivo de las investigaciones presentadas en esta tesis doctoral se centra en la identificación de nuevas alteraciones moleculares subyacentes a los cambios motores y cognitivos en tejido post-mortem de médula espinal humana y en muestras de cerebro de pacientes con ELA y en las muestras de cerebro de pacientes con FTLD-TDP en comparación con muestras controles, combinando estudios de microarray, expresión de mRNA, proteínas y ensayos enzimáticos. Los resultados obtenidos han identificado nuevas alteraciones moleculares dentro del espectro ELA- DLFT en diferentes funciones biológicas y vías celulares que incluyen cambios en el metabolismo de energético y mitocondrial, la neuroinflamación, la estructura neuronal, la neurotransmisión, los mecanismos de transporte axonal y la función de oligodendrocitos; permitiendo a su vez, la selección e identificación de nuevas moléculas candidatas a biomarcadores para estos trastornos

    White matter alterations in Alzheimer’s disease without concomitant pathologies

    Get PDF
    Aims: Most individuals with AD neuropathological changes have co-morbidities which have an impact on the integrity of the WM. This study analyses oligodendrocyte and myelin markers in the frontal WM in a series of AD cases without clinical or pathological co-morbidities. Methods: From a consecutive autopsy series, 206 cases had neuropathological changes of AD; among them, only 33 were AD without co-morbidities. WM alterations were first evaluated in coronal sections of the frontal lobe in every case. Then, RT-qPCR and immunohistochemistry were carried out in the frontal WM of AD cases without co-morbidities to analyse the expression of selected oligodendrocyte and myelin markers. Results: WM demyelination was more marked in AD with co-morbidities when compared with AD cases without co-morbidities. Regarding the later, mRNA expression levels of MBP, PLP1, CNP, MAG, MAL, MOG and MOBP were preserved at stages I-II/0-A when compared with middle-aged (MA) individuals, but significantly decreased at stages III-IV/0-C. This was accompanied by reduced expression of NG2 and PDGFRA mRNA, reduced numbers of NG2-, Olig2- and HDAC2-immunoreactive cells and reduced glucose transporter immunoreactivity. Partial recovery of some of these markers occurred at stages V-VI/B-C. Conclusions: The present observations demonstrate that co-morbidities have an impact on WM integrity in the elderly and in AD, and that early alterations in oligodendrocytes and transcription of genes linked to myelin proteins in WM occur in AD cases without co-morbidities. These are followed by partial recovery attempts at advanced stages. These observations suggest that oligodendrocytopathy is part of AD

    Delineating the efficacy of a cannabis-based medicine at advanced stages of dementia in a murine model

    Get PDF
    Previous reports have demonstrated that the combination of Δ9-tetrahydrocannabinol (Δ9-THC) and cannabidiol (CBD) botanical extracts, which are the components of an already approved cannabis-based medicine, reduce the Alzheimer-like phenotype of AβPP/PS1 transgenic mice when chronically administered during the early symptomatic stage. Here, we provide evidence that such natural cannabinoids are still effective in reducing memory impairment in AβPP/PS1 mice at advanced stages of the disease but are not effective in modifying the Aβ processing or in reducing the glial reactivity associated with aberrant Aβ deposition as occurs when administered at early stages of the disease. The present study also demonstrates that natural cannabinoids do not affect cognitive impairment associated with healthy aging in wild-type mice. The positive effects induced by Δ9-THC and CBD in aged AβPP/PS1 mice are associated with reduced GluR2/3 and increased levels of GABA-A Rα1 in cannabinoid-treated animals when compared with animals treated with vehicle alone

    Genetic deletion of CB1 cannabinoid receptors exacerbates the Alzheimer-like symptoms in a transgenic animal model

    Get PDF
    Activating CB1 cannabinoid receptor has been demonstrated to produce certain therapeutic effects in animal models of Alzheimer's disease (AD). In this study, we evaluated the specific contribution of CB1 receptor to the progression of AD-like pathology in double transgenic APP/PS1 mice. A new mouse strain was generated by crossing APP/PS1 transgenic mice with CB1 knockout mice. Genetic deletion of CB1 drastically reduced the survival of APP/PS1 mice. In spite that CB1 mutant mice bearing the APP/PS1 transgene developed normally, they suddenly died within the first two months of life likely due to spontaneous seizures. This increased mortality could be related to an imbalance in the excitatory/inhibitory transmission in the hippocampus as suggested by the reduced density of inhibitory parvalbumin positive neurons observed in APP/PS1 mice lacking CB1 receptor at 7 weeks of age. We also evaluated the AD-like phenotype of APP/PS1 mice heterozygous for the CB1 deletion at 3 and 6 months of age. The memory impairment associated to APP/PS1 transgene was accelerated in these mice. Neither the soluble levels of Aβ or the density of Aβ plaques were modified in APP/PS1 mice heterozygous for CB1 deletion at any age. However, the reduction in CB1 receptor expression decreased the levels of PSD-95 protein in APP/PS1 mice, suggesting a synaptic dysfunction in these animals that could account for the acceleration of the memory impairment observed. In summary, our results suggest a crucial role for CB1 receptor in the progression of AD-related pathological events

    Elevated Cerebrospinal Fluid Proteins and Albumin Determine a Poor Prognosis for Spinal Amyotrophic Lateral Sclerosis

    Full text link
    Amyotrophic lateral sclerosis (ALS) is a heterogeneous disease, both in its onset phenotype and in its rate of progression. The aim of this study was to establish whether the dysfunction of the blood-brain barrier (BBB) and blood-spinal cord barrier (BSCB) measured through cerebrospinal fluid (CSF) proteins and the albumin-quotient (QAlb) are related to the speed of disease progression. An amount of 246 patients diagnosed with ALS were included. CSF and serum samples were determined biochemically for different parameters. Survival analysis based on phenotype shows higher probability of death for bulbar phenotype compared to spinal phenotype (p-value: 0.0006). For the effect of CSF proteins, data shows an increased risk of death for spinal ALS patients as the value of CSF proteins increases. The same model replicated for CSF albumin yielded similar results. Statistical models determined that the lowest cut-off value for CSF proteins able to differentiate patients with a good prognosis and worse prognosis corresponds to CSF proteins >= 0.5 g/L (p-value: 0.0189). For the CSF albumin, the QAlb >= 0.65 is associated with elevated probability of death (p-value: 0.0073). High levels of QAlb are a bad prognostic indicator for the spinal phenotype, in addition to high CSF proteins levels that also act as a marker of poor prognosis

    Common and Specific Marks of Different Tau Strains Following Intra-Hippocampal Injection of AD, PiD, and GGT Inoculum in hTau Transgenic Mice

    Full text link
    Heterozygous hTau mice were used for the study of tau seeding. These mice express the six human tau isoforms, with a high predominance of 3Rtau over 4Rtau. The following groups were assessed: (i) non-inoculated mice aged 9 months (n = 4); (ii) Alzheimer's Disease (AD)-inoculated mice (n = 4); (iii) Globular Glial Tauopathy (GGT)-inoculated mice (n = 4); (iv) Pick's disease (PiD)-inoculated mice (n = 4); (v) control-inoculated mice (n = 4); and (vi) inoculated with vehicle alone (n = 2). AD-inoculated mice showed AT8-immunoreactive neuronal pre-tangles, granular aggregates, and dots in the CA1 region of the hippocampus, dentate gyrus (DG), and hilus, and threads and dots in the ipsilateral corpus callosum. GGT-inoculated mice showed unique or multiple AT8-immunoreactive globular deposits in neurons, occasionally extended to the proximal dendrites. PiD-inoculated mice showed a few loose pre-tangles in the CA1 region, DG, and cerebral cortex near the injection site. Coiled bodies were formed in the corpus callosum in AD-inoculated mice, but GGT-inoculated mice lacked globular glial inclusions. Tau deposits in inoculated mice co-localized active kinases p38-P and SAPK/JNK-P, thus suggesting active phosphorylation of the host tau. Tau deposits were absent in hTau mice inoculated with control homogenates and vehicle alone. Deposits in AD-inoculated hTau mice contained 3Rtau and 4Rtau; those in GGT-inoculated mice were mainly stained with anti-4Rtau antibodies, but a small number of deposits contained 3Rtau. Deposits in PiD-inoculated mice were stained with anti-3Rtau antibodies, but rare neuronal, thread-like, and dot-like deposits showed 4Rtau immunoreactivity. These findings show that tau strains produce different patterns of active neuronal seeding, which also depend on the host tau. Unexpected 3Rtau and 4Rtau deposits after inoculation of homogenates from 4R and 3R tauopathies, respectively, suggests the regulation of exon 10 splicing of the host tau during the process of seeding, thus modulating the plasticity of the cytoskeleton

    TDP-43 Vasculopathy in the Spinal Cord in Sporadic Amyotrophic Lateral Sclerosis (sALS) and Frontal Cortex in sALS/FTLD-TDP

    Get PDF
    Sporadic amyotrophic lateral sclerosis (sALS) and FTLD-TDP are neurodegenerative diseases within the spectrum of TDP-43 proteinopathies. Since abnormal blood vessels and altered blood-brain barrier have been described in sALS, we wanted to know whether TDP-43 pathology also occurs in blood vessels in sALS/FTLD-TDP. TDP-43 deposits were identified in association with small blood vessels of the spinal cord in 7 of 14 cases of sALS and in small blood vessels of frontal cortex area 8 in 6 of 11 FTLD-TDP and sALS cases, one of them carrying a GRN mutation. This was achieved using single and double-labeling immunohistochemistry, and double-labeling immunofluorescence and confocal microscopy. In the sALS spinal cord, P-TDP43 Ser403-404 deposits were elongated and parallel to the lumen, whereas others were granular, seldom forming clusters. In the frontal cortex, the inclusions were granular, or elongated and parallel to the lumen, or forming small globules within or in the external surface of the blood vessel wall. Other deposits were localized in the perivascular space. The present findings are in line with previous observations of TDP-43 vasculopathy in a subset of FTLD-TDP cases and identify this pathology in the spinal cord and frontal cortex in a subset of cases within the sALS/FTLD-TDP spectrum

    Altered dynein axonemal assembly factor 1 expression in C-Boutons in bulbar and spinal cord motor-neurons in sporadic amyotrophic lateral sclerosis

    Get PDF
    Dyneins are major components of microtubules. Dynein assembly is modulated by a heterogeneous group of dynein axonemal assembly factors (DNAAFs). The present study analyzes dynein axonemal assembly factor 1 (DNAAF1) and leucine-rich repeat-containing protein 50 (LRRC50), the corresponding encoded protein, in lower motor neurons in spinal cord of sALS postmortem samples and hSOD1-G93A transgenic mice compared with controls. DNAAF1 mRNA is significantly reduced in the anterior horn in sALS, and LRRC50 immunoreactivity is significantly reduced in C-boutons of the remaining motor neurons of the anterior horn, dorsal nucleus of the vagus nerve, and hypoglossal nuclei at terminal stages of ALS. LRRC50 immunoreactivity has a perinuclear distribution in motor neurons in sALS thus suggesting a disorder of transport. The number of LRRC50-/S1R-immunoreactive structures is also significantly decreased in hSOD1-G93A transgenic mice at the age of 90days (preclinical stages), and the number of motor neurons with LRRC50immunoreactive structures is significantly reduced in animals aged 150days (clinical stages). These observations suggest cholinergic denervation of motor neurons as a pathogenic factor in motor neuron disease. LRRC50 protein levels were not detected in human CSF

    Wnt signaling alterations in the human spinal cord of amyotrophic lateral sclerosis cases: spotlight on Fz2 and Wnt5a

    Get PDF
    Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disorder with no cure, and elucidation of the mechanisms mediating neuronal death in this neuropathology is crucial to develop effective treatments. It has recently been demonstrated in animal models that the Wnt family of proteins is involved in this neuropathology, although its potential involvement in case of humans is almost unknown. We analyzed the expression of Wnt signaling components in healthy and ALS human spinal cords by quantitative RT-PCR, and we found that most Wnt ligands, modulators, receptors, and co-receptors were expressed in healthy controls. Moreover, we observed clear alterations in the mRNA expression of different components of this family of proteins in human spinal cord tissue from ALS cases. Specifically, we detected a significant increase in the mRNA levels of Wnt3, Wnt4, Fz2, and Fz8, together with several non-significant increases in the mRNA expression of other genes such as Wnt2b, Wnt5a, Fz3, Lrp5, and sFRP3. Based on these observations and on previous reports of studies performed in animal models, we evaluated with immunohistochemistry the protein expression patterns of Fz2 and Fz5 receptors and their main ligand Wnt5a in control samples and ALS cases. No substantial changes were observed in Fz5 protein expression pattern in ALS samples. However, we detected an increase in the amount of Fz2+ astrocytes in the borderline between gray and white matter at the ventral horn in ALS samples. Finally, Wnt5a expression was observed in neurons and astrocytes in both control and ALS samples, although Wnt5a immunolabeling in astroglial cells was significantly increased in ALS spinal cords in the same region where changes in Fz2 were observed. Altogether, these observations strongly suggest that the Wnt family of proteins, and more specifically Fz2 and Wnt5a, might be involved in human ALS pathology

    Amyotrophic lateral sclerosis, gene deregulation in the anterior horn of the spinal cord and frontal cortex area 8: implications in frontotemporal lobar degeneration

    Get PDF
    Transcriptome arrays identifies 747 genes differentially expressed in the anterior horn of the spinal cord and 2,300 genes differentially expressed in frontal cortex area 8 in a single group of typical sALS cases without frontotemporal dementia compared with age-matched controls. Main up-regulated clusters in the anterior horn are related to inflammation and apoptosis; down-regulated clusters are linked to axoneme structures and protein synthesis. In contrast, up-regulated gene clusters in frontal cortex area 8 involve neurotransmission, synaptic proteins and vesicle trafficking, whereas main down-regulated genes cluster into oligodendrocyte function and myelin-related proteins. RT-qPCR validates the expression of 58 of 66 assessed genes from different clusters. The present results: a. reveal regional differences in de-regulated gene expression between the anterior horn of the spinal cord and frontal cortex area 8 in the same individuals suffering from sALS; b. validate and extend our knowledge about the complexity of the inflammatory response in the anterior horn of the spinal cord; and c. identify for the first time extensive gene up-regulation of neurotransmission and synaptic-related genes, together with significant down-regulation of oligodendrocyte-and myelin-related genes, as important contributors to the pathogenesis of frontal cortex alterations in the sALS/frontotemporal lobar degeneration spectrum complex at stages with no apparent cognitive impairment
    corecore